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Abstract Data assimilation is the application of Bayes’ theorem to condition the states of a dynamical
systems model on observations. Any real-world application of Bayes’ theorem is approximate, and
therefore, we cannot expect that data assimilation will preserve all of the information available from
models and observations. We outline a framework for measuring information in models, observations, and
evaluation data in a way that allows us to quantify information loss during (necessarily imperfect) data
assimilation. This facilitates quantitative analysis of trade-offs between improving (usually expensive) remote
sensing observing systems versus improving data assimilation design and implementation. We demonstrate
this methodology on a previously published application of the ensemble Kalman filter used to assimilate
remote sensing soil moisture retrievals from Advanced Microwave Scattering Radiometer for Earth (AMSR-E)
into the Noah land surface model.

1. Introduction

Data assimilation (DA) is one of the most common methods for extracting information from Earth-observing
remote sensing observations or retrievals. One especially important example of this in the hydrologic
sciences is soil moisture DA (De Lannoy et al., 2016). For instance, the NASA Soil Moisture Active/Passive
(SMAP) mission (Entekhabi et al., 2010) offers a DA product as part of the baseline mission (Reichle et al.,
2016). At least 21 of the 55 groups participating in the SMAP Early Adopter Program (Moran et al., 2015)
use the ensemble Kalman filter (EnKF; Evensen, 2003) as a primary method for extracting information from
SMAP data products. Soil moisture DA is used routinely in Land Data Assimilation Systems (LDAS; Kumar
et al., 2008; McNally et al., 2017; Rodell et al., 2004; Xia et al., 2011) for hydrological and hydrometeorological
modeling (Maggioni & Houser, 2017), as well as in many other hydrology-related remote sensing applications
(Mladenova et al., 2017).

Developing and deploying remote sensing instruments is expensive. Given that no DA algorithm or
application will ever be able to perfectly extract the full information content of any remote sensing
observations, we would like to have the ability to quantify how much information is present in a particular
set of assimilation data versus the amount of information we are able to extract from those data using
necessarily imperfect DA techniques. Maggioni et al. (2011) showed that overly simplistic precipitation
uncertainty distributions degrade soil moisture DA results, and Maggioni et al. (2013) reported, more
generally, that “a key issue of data assimilation is that observational and modeling uncertainties are poorly
known, and incorrect assumptions about these errors may compromise (DA) efficiency.” Another issue that
is frequently encountered when evaluating DA results is that no in situ data measure exactly the same
quantities that the model simulates or that the remote sensing platform observes. Our purpose here is to
propose a general quantitative theory for measuring the effects of DA assumptions on overall DA
performance in the presence of only imperfect evaluation data.

DA is defined in this paper as the application of Bayes’ theorem to update the states of a dynamical
simulation model by probabilistic conditioning on observation data. We will use the word retrievals to refer
to the assimilated observation data (often, assimilated data are from satellites or other remote sensing
platforms), and distinguish these from evaluation data, which are (typically in situ) observation data used
to evaluate a particular DA application. However, notice that the theory we propose here is applicable to
any type of assimilated observation data, not just satellite retrievals.
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There are four sources of uncertainty in any DA application:

1. error in the dynamical systems model,
2. error in the assimilated retrievals,
3. approximations and assumptions in the DA algorithm itself, and
4. error in evaluation data.

The purpose of DA is to help mitigate the first two sources of uncertainty, by using imperfect retrievals to cor-
rect imperfect model states. But no DA system canmitigate model and retrieval error completely. In principle,
there is a finite quantity of information about the true state of a dynamical system contained in the simulated
state of an (imperfect) model, and there is also a finite quantity of information about the true state of that
dynamical system in the (imperfect) retrievals. Taken together, there is some total quantity of information
available to the DA algorithm from both model and retrievals together. However, because of errors and
uncertainty in the model and errors and uncertainty in the retrievals, the total available information from
both together is generally less than what is necessary to achieve perfectly accurate predictions of the real
system states.

Related to the third source of uncertainty, we can imagine a hypothetically perfect DA algorithm that could
extract and combine all of the incomplete information from both model and retrievals. In order to achieve
perfect information extraction, this hypothetically perfect DA algorithm would necessarily include perfect
(nonparametric) model and retrieval error distributions, would include a perfect (typically nonlinear) observa-
tion operator, and would be able to sample the Bayesian posterior with at least asymptotic efficiency (e.g., by
Markov chain Monte Carlo). Note, however, that even this hypothetically perfect DA algorithmwould not pro-
duce perfectly accurate and perfectly precise estimates of the true system state because of the fact that the
total amount of information from the imperfect model and imperfect retrievals is not generally enough to
fully specify the true state of the system.

More importantly, any realistic DA algorithm will not be perfectly efficient at extracting whatever amount of
information does exist from the model and retrievals. Importantly, any assumptions or approximations in the
DA algorithm itself (e.g., parametric approximations of uncertainty distributions and incomplete sampling)
will result in some amount of information loss relative to the total that is hypothetically available from the
model and retrievals.

Finally, when we test the results of any particular DA application against some set of evaluation data (usually
in situ data), some portion of the mismatch between DA posteriors and evaluation data will be due to error in
the evaluation data. As an example, ground truth soil moisture data might come from in situ probes that have
effectively point-scale spatial support, whereas the model and remote sensing data might have spatial sup-
port on the order of tens or hundreds of meters. This means that we can never fully or precisely measure how
well the DA results emulate the true system state, and this also means that we cannot fully measure the total
information content of themodel and retrievals about the true system state. Error in evaluation datamight be
systematic or random, and in particular, we generally expect that any mismatch between the spatiotemporal
support of the evaluation data and the model grid will introduce systematic, site-specific biases, which must
be accounted for when we quantify uncertainty in any DA system.

Taken together, these issues contribute to overall uncertainty in the results from any DA application; how-
ever, each of these issues requires a very different strategy for mitigation. On one hand, increasing the
total amount of information available to a DA system requires either new model development to increase
the realism or information content of the simulation model, or developing and deploying improved obser-
ving systems to increase the information content of the retrievals. On the other hand, improving a DA
algorithm itself generally requires increasing computational expense (e.g., increasing ensemble size,
eliminating parametric assumptions, implementing robust sampling methods like MCMC, dynamic tuning
of model and retrieval error parameters or distributions). If we want to build or improve an existing DA
system for a particular problem, then it would be beneficial to know the extent to which each of these
three sources of uncertainty (model, retrievals, and algorithm) is a primary limiting factor on overall
performance. Moreover, this three-way uncertainty segregation must be robust to the fact that there will
generally be both random and systematic error in evaluation data; otherwise, we risk simply tuning a DA
system to bad data.
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In this paper, we propose a strategy for separating and quantifying the first three sources of DA uncertainty in
the presence of the fourth. We refer to the ability for a given DA algorithm to use the full information content
of models and retrievals as the efficiency of DA, and we will measure both total information content and
information-use efficiency using information theory (Shannon, 1948). In particular, what we are calling effi-
ciency is a form of statistical efficiency, which should not be confused with computational efficiency. In fact,
our purpose is to propose a metric that could help quantify trade-offs between statistical and computational
DA efficiencies in the presence of imperfect and incomplete information (i.e., uncertainty in models, retrie-
vals, and evaluation data).

Our strategy is to first measure the information content of simulated model states, and of the retrieval data
relative to the imperfect evaluation data, and then measure the fraction of this information that is extracted
by a given DA implementation or algorithm. This allows us to measure empirically what fraction of total infor-
mation loss could be mitigated in a particular DA application by spending more resources on improved
observing systems versus improved computational DA algorithms. All of this is done without any assumption
about how well imperfect evaluation data represents the true state of the system. The theory we propose is
general, in the sense that it can be applied to any DA filtering application.

The rest of this paper is organized as follows. Section 2 outlines the theory, and section 2.1 in particular
describes how to measure information contained in models and data, as well as the fraction of that informa-
tion extracted by DA. Section 2.2 then describes how to use an information-theory divergence between
Bayesian posteriors to segregate inefficiency effects due to different individual assumptions and/or approx-
imations in the DA filter, so that we can identify specific causes of inefficiency in the DA algorithm. Section 3
gives an example application related to soil moisture, and section 4 contains a short discussion about what it
means to say that a data fusion or inference strategy is optimal.

2. Theory
2.1. Information Use Efficiency

The situation that we investigate is one where a scientist intends to evaluate the performance of some parti-
cular DA application by comparison with a set of in situ measurements. These in situ measurements may be
sparse or dense, have any spatiotemporal support, and may be directly or indirectly related to the variable
that we are observing and assimilating. For example, we could conceivably evaluate assimilation of soil moist-
ure retrievals by looking for improvements to modeled estimates of things like latent heat flux, leaf area
index, future precipitation (via land/atmosphere couplings), or any other diagnostic variable.

Our problem therefore admits four primary variables: the random variable Y represents remote sensing retrie-
vals (or whatever data is assimilated into the model), the random variable X represents model estimates of
the state or flux that we want to estimate or predict without DA (this is called the open-loop), the random vari-
able X+ represents analysis estimates (after DA) of the same variable, and the random variable Z represents
whatever measurements are used to evaluate the DA experiment. Again, variables X, Y, and Z do not neces-
sarily represent precisely the same physical quantities, although X and X+ do represent the same physical
quantities before versus after DA.

Our notation will be that capital letters represent random variables and lowercase letters represent realiza-
tions of random variables. This holds for all variables except R and Q, which are standard notation for retrieval
and model error covariances, respectively. In the remainder of this essay, the term observation refers exclu-
sively to evaluation data, and retrieval refers to whatever data are assimilated into the model.

To address the main question outlined in section 1 about whether DA is limited by the information content of
retrievals or by the ability of the assimilation algorithm to extract that information, we need to define a way to
measure the information content of data. To begin, we propose to conceptualize the problem as illustrated in
Figure 1. Loosely speaking, the area of each circle in these Venn diagrams represents our prior uncertainty,
here measured as Shannon entropy, about one of our primary variables: X, Y, or Z. The area of the overlaps
between the three circles represents the information shared by any pair or triplet of variables, here measured
as mutual information. In general, information shared between a pair of variables is information contained in
one variable that allows us to reduce uncertainty about the other variable.
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2.1.1. Information-Theory Background
To make the diagrams in Figure 1 formal, we need quantities that represent the various components of these
diagrams. This section (section 2.1.1) gives very brief background on the foundational information theory
metrics, including mutual information and entropy, and more details can be found in the textbook by
Cover and Thomas (1991). In the following subsections, we will use these standard information theory metrics
to develop a new metric for DA efficiency.

Under probability theory, the change in our knowledge about one variable (e.g., Z) that occurs due to
collecting and conditioning on new data (e.g., Y) is described by the ratio of the conditional distribution to
the marginal distribution over the variable of interest:

p ZjYð Þ
p Zð Þ : (1)

Here p(Z) is the probability distribution that represents everything we know about the evaluation
observations Z before running a model or collecting remote sensing retrievals, and the conditional probabil-
ity distribution p(Z| Y) represents what we know about Z after considering only the retrievals. In our applica-
tions, p(Z), p(Y), and p(Z, Y) are empirical, derived either as histograms or as kernel density functions.

We can integrate such ratios into metrics that represent the expected change in our knowledge about the
value of any particular variable (e.g., Z) due to making direct measurements on that variable (i.e., measure-
ments like Z = z). This statistic is called entropy, and is defined as

H Zð Þ ¼ ∫p zð Þ ln p zð Þ�1� �
dz: (2)

The entropy of the model predictions, H(X), is illustrated by the gray-shaded region in Figure 1a. H(X) is
calculated by taking all of the open-loop model predictions during the entire assimilation period and domain
and constructing an empirical distribution to get p(X). Equation (2) is then applied to this empirical distribu-
tion. The process is similar for H(Y) and H(Z).

Suppose now that instead of having access to direct measurements like Z = z we have access to measure-
ments of a related variable—for example, some remote sensing retrievals Y = y. The next quantity we need
is the expected divergence between what we would learn if we were to collect measurements like Z = z
depending on whether or not we had previously conditioned our knowledge of Z on information in measure-
ments Y = y. This is quantified in a way that is analogous to equation (2) as the mutual information between
Y and Z:

I Y; Zð Þ ¼ ∫∫ p y; zð Þ ln p zjyð Þ
p zð Þ

� �
dydz: (3)

Figure 1. A representative illustration of the information metrics for a prototypical DA problem. The area occupied by any
full circle (e.g., for X in (a)) represents the total entropy according to equation (2) of the corresponding variable: X = model
predictions, Y = assimilated retrievals, and Z = in situ evaluation observations. The overlapping portions of the Venn dia-
grams (e.g., I(X : Y) shaded in (b) represent the amount of information that is shared between each pair or triplet of variables
according to equation (3). This shared information measures the amount of entropy that can be reduced in any one of the
variables given knowledge of the other(s) according to equation (4.1).
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I(Y; Z) can be interpreted as the expected amount of information about random variable Z that is contained in
realizations of the random variable Y and vice versa; that is, I(Y; Z) = I(Z; Y) always.

We now have everything necessary to formalize our diagrams in Figure 1. In particular, the expected residual
entropy about the evaluation measurements Z conditional on retrievals Y is the difference between the two
metrics above:

H ZjYð Þ ¼ H Zð Þ � I Y; Zð Þ: (4:1)

The mutual information statistic from equation (3) and the conditional entropy statistic from equation (4.1)
are illustrated by the orange and blue-shaded regions in Figure 1b, respectively. Although we will not use this
fact directly, it is worth noticing that since I(Z; Y) = I(Y; Z), equation (4.1) is symmetric in the sense that

H YjZð Þ ¼ H Yð Þ � I Y; Zð Þ: (4:2)

We expect that running a model is generally, or at least often, cheaper than deploying a new observing sys-
tem, so if we want to know the expected marginal information content of the remote sensing retrievals over
and above what is available from our model, then we are really interested in the probability ratio conditional
on model predictions X:

p ZjY; Xð Þ
p ZjXð Þ : (5)

To understand the information content of a remote sensing retrieval in the context of DA—where we are
already running a model—we will need to estimate conditional information metrics like

I Y; ZjXð Þ ¼ ∫∫∫p x; y; zð Þ ln p zjy; xð Þ
p zjxð Þ

� �
dxdydz: (6)

Equation (6) follows directly from equation (3) after three applications of the chain rule of probability theory
(not shown here). I(Y; Z| X) is the amount of information about Z gained by collecting retrievals in the case that
we are already running a model to simulate X—this quantity is illustrated by the pink-shaded region in
Figure 1c.

One might intuit that the amount of information contained in Y about Z conditional on X (i.e., I(Y; Z| X)) might
be lower when conditional on a high-quality model than it would be if we were not running any model. The
natural intuition is—we imagine—that some of the information from the retrievals will be redundant with
some of the information from the model. This intuition is not necessarily true because of information synergy
(Schneidman et al., 2003). It is possible for three-way mutual information statistics like I(X; Y; Z), which repre-
sents the information shared by all three variables (purple-shaded region in Figure 1c), to be negative.
Negative multivariate mutual information is somewhat unintuitive—it does not indicate that the variables
are not informative of each other; rather, it means that any combination of two or more random variables
together containmore information about a third random variable than the sum of the individual information
contents of the predictor variables individually. That is, information synergy occurs when I(Z; X, Y) = I(Z;
X) + I(Z; Y) � I(X; Y; Z) > I(Z; X) + I(Z; Y), which only happens when I(X; Y; Z) < 0.

Our soil moisture DA examples in section 3 show evidence of synergistic information, and we expect that this
will be relatively common in other DA applications as well. It is not necessarily the case that remote sensing
retrievals become less valuable in a DA setting as the open-loop model accuracy improves.
2.1.2. Efficiency Metrics
We now have enough quantitative theory to derive an efficiency metric for any DA filter. The conceptual
steps that we propose for this are illustrated in Figure 2. The information content of our open-loop predic-
tions X about the evaluation data is given by I(Z; X)—this is the amount of entropy in the experimental vari-
able that can be reduced by conditioning on model predictions; this concept is illustrated by the Venn
diagram in Figure 2a. The retrievals Y presumably add some extra information on top of what is available from
the model alone according to equation (6), and this is illustrated by the blue-shaded region in Figure 2b. We
now have a total quantity of information available from the (imperfect) model and (imperfect) retrievals
about the (imperfect) evaluation data that is given by the following sum rule:
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I Z; X; Yð Þ ¼ I Z; Xð Þ þ I Z; YjXð Þ: (7)

This quantity is illustrated by the purple-shaded region in Figure 2c, and is the total amount of information
that is available to our DA filter in the context of our particular real-world experiment.

Next, we actually run the DA algorithm to obtain an analysis or posterior estimate of the model state, X+.
We can measure the information content about Z contained in the analysis estimate in a manner similar to
equation (3) to obtain the quantity I(Z; X+). This quantity can never exceed the total available information
from equation (7) due to the data processing inequality (Kinney & Atwal, 2014), and this is illustrated by
the green-shaded region in Figure 2d. The data processing inequality states, simply, that if there exist a
Markov conditioning relationship between three variables—say, for example, X → Y → Z—then I(Z;
X) ≤ I(Z; Y) always. And important instance of this occurs when one random variable (or the probability distri-
bution over that variable) is a function of another random variable (or the probability distribution over
another variable). In our case, the Markov chain we care about is X+ → {X, Y} → Z, which holds during DA
because the probability distribution over X+ is derived as a function of the joint probability distribution over
{X, Y}; therefore, I(Z; X+) ≤ I(Z; X, Y) always.

The first main assertion in this paper is that the ratio of the total information contained in the analysis to the
total information available to the filter from the imperfect model and imperfect retrievals represents the
information-use efficiency of DA:

EDA ¼ I Z; Xþð Þ
I Z; X; Yð Þ : (8)

Figure 2. Conceptual diagram of a nonparametric DA efficiency metric. (a) The amount of information in the model about
the in situ measurements according to equation (3) (with Y replaced by X). (b) The information added by the remote
sensing retrievals according to equation (6). (c) The total amount of information captured by the model and retrieval
together about the evaluation data according to equation (7). (d) The efficiency ratio in equation (8). The information
shared between the DA analysis time series and the evaluation data will always be less than the total available information
due to inefficiencies in the DA algorithm.
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Notice that if the model were able to perfectly simulate the evaluation data, then I(Z; X) = H(Z) and
I(Z; X, Y) = H(Z) regardless of the quality of the remote sensing retrievals. In reality, the denominator of
equation (8) will be less than the total entropy of the evaluation data due to model error and retrieval error.
This efficiency concept is illustrated in Figure 2d.

Although equation (8) represents total DA information-use efficiency, we might instead be interested in the
ability of DA to use information contained in retrievals specifically, rather than the ability of DA to use the
total information available from the model plus retrievals. The information-use efficiency relative to retrievals
only can be isolated by taking the information added by DA (as compared to using themodel alone) as a ratio
of the total information available from observations:

EY ¼ I Z; Xþð Þ � I Z; Xð Þ
I Z; YjXð Þ : (9)

Equation (9) measures the increase of information in the analysis vector, as compared to the open-loop, due
to DA as a fraction of the total information about evaluation data that are available from retrievals. The effi-
ciencies in both equations (8) and (9) can be negative in the case that DA corrupts information in the models
or retrievals (i.e., the analysis is worse than the open-loop when compared against the evaluation data), but
they can never exceed a value of 1.
2.1.3. Properties of the Efficiency Metrics
To reiterate, these efficiency metrics do not assume that the X, Y, and Z variables in equations (8) and (9) all
represent the same physical quantities. This includes whether or not the model, retrieval, and evaluation data
all have similar spatiotemporal support or spatiotemporal resolution. For example, it is a common problem
when evaluating remote sensing data that in situ evaluation data do not necessarily have the same spatial
support as the retrieval. As an example, Xmight be soil moisture simulated by a model at a finite resolution,
and Zmight be in situ soil moisture data, effectively at a point scale. Or X and Z could represent different phy-
sical variables altogether; perhaps X is soil moisture simulated on a 1/8° grid (e.g., Xia et al., 2013), and Z is leaf
area index as estimated from remote sensing (e.g., Knyazikhin et al., 1999). Nevertheless, there is some
amount of information shared between the modeled data, the retrievals, and the in situ data, and this total
amount of information can, in principle, be extracted by a hypothetically perfect DA algorithm in the analysis
vector X+. Our efficiency metrics measure only the ability of DA to extract whatever information is available in
the imperfect data sources.

To formalize this, consider three Markov chains such that there is some set of underlying true physical
variable θ that exerts causal influence on three other true physical variables, say ξ , ψ, and ζ , which are
each either observed or modeled by X, Y, and Z, respectively. ξ , ψ, and ζ could be the same variable
(e.g., soil moisture) at different spatiotemporal scales, or could be different variables altogether (e.g., LAI
and soil moisture). The resulting Markov chains can be expressed as θ → ξ → X, θ → ψ → Y,
and θ → ζ → Z.

Ideally, we would want our efficiency metrics EDA and EY, which are calculated with imperfect evaluation data
Z, to be either bounded or convergent with hypothetical versions of these same efficiency metrics that would
result if we were able to measure exactly the underlying true state of the system (i.e., that would result if Z = θ
exactly). Bounding these metrics does not appear to be possible, since this would depend on there being a

consistent ordering between the ratios I Z;Xþ;θð Þ
I Z;X;Y;θð Þ and

I Xþ;θð Þ
I X;Y;θð Þ, which does not follow from any reasonable set of

assumptions.

We cannot have boundedness; however, the assumption that gives our efficiency metrics an intuitive inter-
pretation is that each variable is related to the others only through the true state of the system—that is, there
are no spurious, persistent correlations between X, Y, and Z. This assumption about spurious correlations
means that the only correlation between X and Z (Y and Z) is through θ (the true state of the system), which
we formalize by saying that (a) p(X| Z, ζ ) = p(X| ζ ) and (b) p(Z| X, ξ) = p(Z| ξ), and similarly for Y. It is always true
that I(Z; X, ξ) ≥ I(Z; X), and the consequence of (b) is that I(Z; X, ξ) = I(Z; ξ); taken together, these imply that
I(Z; ξ) ≥ I(Z; X). This means that as uncertainty in the simulation/observation of ξ (ψ) by X (Y) reduces, these
simulations (observations) cannot provide any more information about Z than would be available if we knew
the true physical variables (i.e., ξ and ψ) exactly.
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Formally, the efficiency metrics have two desirable properties:

1. Information in the DA analysis about the evaluation data is bounded above by total information in the
model and retrievals: I(Z; X+) ≤ I(Z; X, Y). This means that EDA and EY are bounded above by 1.

2. Perfect measured efficiency relative to (imperfect) evaluation data (i.e., EDA ¼ 1 or EY ¼ 1) only occur
when perfect information extraction is achieved by the data assimilation algorithm relative to the
(unknown) true state of the system.

Notice that this does not mean that perfect measured efficiency relative to (imperfect) evaluation data (i.e.,
EDA ¼ 1 orEY ¼ 1) only occurs when perfect information extraction is achieved with respect to the true state
of the system.

As mentioned in section 2.1.2, the first condition is always true because of the data processing inequality
(Kinney & Atwal, 2014). Because X+ depends completely on X and Y and not at all on Z (i.e., the DA
algorithm does not ingest the evaluation data directly), these variables have a Markov relationship like
Z → {X, Y} → X+. By the data processing inequality, we therefore know that I(Z; X+) ≤ I(Z; X, Y) and E≤1:
Similarly, since I(Z; X, Y) = I(Z; Y| X) + I(Z; X), then I(Z; X+) � I(Z; X) ≤ I(Z; Y| X) and EY≤1. Thus, the first condition
is always satisfied as long as the evaluation data, Z, are not used in the DA procedure.

The second condition is formally expressed as I(Z; X+) = I(Z; X, Y)→ I(θ; X+) = I(θ; X, Y), where the arrow here is
the symbol for logical implication, rather than the symbol for a probabilistic conditioning relationship as in
the various Markov chain expressions. This condition is met under the assumption that any errors in the
(imperfect) evaluation data relative to the (unknown) true state of the system are independent of any errors
in the (imperfect) model and (imperfect) retrieval, conditional on the (unknown) truth. Stated formally, we
assume that the following Markov chains hold X → θ → Z and Y → θ → Z, so that {X, Y} → θ → Z. Because
X+ is a mapping from X and Y and is not directly dependent on Z, our four random variables have the follow-
ing Markov relationship: X+ → {X, Y}→ θ → Z. We want to show that the condition of measuring perfect effi-
ciency, that is, I(Z; X+) = I(Z; X, Y), implies bona fide perfect efficiency, that is, that I(θ; X+) = I(θ; X, Y). This is easy
to see, since the condition I(Z; X+) = I(Z; X, Y) implies that the following Markov property also holds: {X,
Y}→ X+ → θ→ Z, and thus, by the data processing inequality, it is necessarily the case that I(θ; X+) = I(θ; X, Y).

To summarize, our efficiency metrics in equations (8) and (9) have the natural property that they are bounded
above by EDA ¼ 1 and EY ¼ 1 and that they only achieve this bound when the DA algorithm is perfect at
extracting information about the unobserved (and typically unobservable) true state of the system. This is true
no matter the quality of our evaluation data Z, and no matter the relationship between our evaluation data
and the model simulations or retrievals—even if the evaluation data is at a completely different scale or of a
completely different variable than the model simulations or retrieval data.
2.1.4. Empirical Estimators
All of the above entropy and information metrics can be estimated from samples of (i) the three-way joint
distribution between X, Y, and Z and (ii) samples of the two-way joint distribution between X+ and Z. This
is done by using empirical distributions like p(X, Y, Z) and Monte Carlo integration of equations like equa-
tions (2), (3), and (6). Paninski (2003) gives a review of some simple empirical estimators for entropy and
mutual information metrics, and we use those estimators here.

One advantage of using discrete-entropy metrics (e.g., Nearing et al., 2013) is that this results in entropy and
mutual information measures that are bounded below by zero, and thus, equations (8) and (9) have straight-
forward interpretations as standard efficiency metrics (bounded above by 1). In this case, the integrals in all of
the entropy and mutual information equations are sums over discretizations of the random variable, and it is
important that we are careful about how to discretize the random variables. Most importantly, it is necessary
that our discretization is not too fine relative to the volume of available data, so that the empirical probability
distributions are not degenerate. In our application example in section 3, we will analyze the precision of
these metrics estimated from a finite data record.

2.2. Decomposition of Bayesian Data Assimilation

We have, in equations (8) and (9), measures of information-use efficiency for a DA filter. In cases where
equation (8) returns a value ofEDA < 1, we would like to knowwhat is causing the filter to be unable to extract
all of the information contained in our assimilated retrievals.
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To accomplish this, we will use the fact that all DA methods are fundamentally approximations of Bayes’
theorem (van Leeuwen, 2010; Wikle & Berliner, 2007). The most basic statement of a DA filter is

pa Xtjyt; x1:t�1ð Þ ¼ p ytjXtð Þp Xtjx1:t�1ð Þ
∫p ytjXtð Þp Xtjx1:t�1ð ÞdXt

: (10)

It is important to understand that the posterior distribution pa (called the analysis distribution) is our best esti-
mate of the true value of the system component simulated by X (i.e., ξ from section 2.1.3) given information
from the model and the retrieval.

There is a natural similarity between the filter expression in equation (10) and the mutual information metrics
discussed in section 2.1. In this section, we will exploit that similarity to develop some diagnostic tests for the
causes of information loss in an imperfect DA filter.

To illustrate this, let us start by using a more precise notation of the DA filter equation:

pa ξ tjyt; x1:t�1ð Þ ¼ p ytjξ tð Þ∫p ξ tjXtð Þp Xtjx1:t�1ð ÞdXt

∫p ytjξ tð Þ∫p ξ tjXtð Þp Xtjx1:t�1ð ÞdXtdξ t
: (11:1)

Notice that the likelihood p(yt| ξt) in equation (11.1) recognizes independence between the retrieval and
the model conditional on the true state of the system ξ , which was our primary assumption from
section 2.1.3. Equations (10) and (11.1) are similar only if we make the assumption that the modeled state
of the system Xt is a random variable representing our best estimate (conditional on X, and Y) of the true
state of the system ξ at time t, but this is exactly the assumption we are testing when using the efficiency
metrics outlined in equations (8) and (9). So we must understand a DA filter using equation (11.1) rather
than equation (10).

Further, notice that if we use a deterministic state-updating model m such that xt ¼ m xt�1;…ð Þ, and the
distribution p(Xt| x1 : t � 1) is such that Xt ∣ x1 : t � 1~f(xt,…), then we can re-write equation (11.1) as

pa ξ tjyt; x1:t�1ð Þ ¼ p ytjξ tð Þp ξ tjxt ¼ m xt�1;…ð Þð Þ
∫p ytjξ tð Þp ξ tjxtð Þdξ t

: (11:2)

The key insight is that the conditional mutual information metrics from section 2.1 are derived from a similar
application of Bayes’ theorem:

p Ztjyt; xtð Þ ¼ p ytjZt; xtð Þp Ztjxtð Þ
∫p ytjZt; xtð Þp Ztjxtð ÞdZt

: (12)

In this case, we cannot assume conditional independence in the likelihood term like we did in equations (11.1)
and (11.2) because, in general, we expect that the model and retrieval will share information that is not con-
tained in the evaluation observations; that is, I(X; Y| Z) > 0. The conditional distribution on the left-hand side
of equation (12) is used in equation (6) to calculate the information contained in the retrievals conditional on
the model I(Y; Z| X).

We now have the basic tools we need to diagnose causes of inefficiencies in any particular application of any
DA filter evaluated against any particular set of in situ data. We will explain the procedure by example. In
section 1 we said that it is common to use the EnKF for soil moisture data assimilation. The EnKF contains sev-
eral distinct assumptions about linearity and Gaussianity of various joint and conditional distributions. In par-
ticular, the EnKF is optimal only in the case where (i) retrievals are linearly related to the modeled state, (ii)
retrieval errors are Gaussian distributed, and (iii) errors in all modeled states are jointly Gaussian distributed.
In cases where these assumptions do not hold, the EnKF will be inefficient, in the sense of equations (8) and
(9), at extracting information from retrievals.

Suppose that we want to test the effects on a particular DA experiment due to assuming that the likelihood
function (i.e., the observation operator) is linear-Gaussian when this relationship really is not linear or the
uncertainty really is not Gaussian. In this case, we would substitute into the right-hand side of equation (12)
the assumed likelihood function, which in this case is Gaussian with a prescribed retrieval error covariance R:
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pN Ztjyt; xtð Þ ¼ N ytjZt; Rð Þp Ztjxtð Þ
∫N ytjZt; Rð Þp Ztjxtð ÞdZt

: (13)

N :jμ;Σð Þ notates a Gaussian with mean μ and covariance Σ . In this case, pN is not the analysis distribution

from the EnKF, but instead is the posterior from equation (12), but with some of the standard EnKF assump-
tions built in. We now measure the expected information loss due to the normality assumptions in the like-
lihood as the divergence from the data-derived conditional to the (partially) analytic conditional from
equation (13):

D p‖pNð Þ ¼ ∫∫∫p x; y; zð Þ ln p zjy; xð Þ
pN zjy; xð Þ

� �
dxdydz: (14)

Notice that this type of divergence is directly analogous to the mutual information metrics used previously—
the mutual information metric in equation (3) is just a divergence from a marginal distribution to a condi-
tional distribution over the same random variable. Here in equation (14), we are measuring a divergence
between two different conditional distributions over the same random variable. Notice also that if we were
to use a DA filter other than the EnKF, the specific assumption about the form of the likelihood function
would be different, and so an analogous version of equation (14) would result.

Equation (14) will return zero divergence when the empirical distribution p(yt| Zt, xt) is (i) exactly Gaussian with
covariance R and (ii) when Y is independent of X conditional on Z; that is, when p ytjZt; xtð Þ ¼ N ytjZt; Rð Þ. We
can, of course, test the second assumption independent of the first by measuring the appropriate informa-
tion loss as

D p‖pIð Þ ¼ ∫∫∫p x; y; zð Þ ln p zjy; xð Þ
pI zjy; xð Þ

� �
dxdydz (15:1)

pI Ztjyt; xtð Þ ¼ p ytjZtð Þp Ztjxtð Þ
∫p ytjZtð Þp Ztjxtð ÞdZt

: (15:2)

The only difference between equations (15.2) and (12) is that we replaced p(yt| Zt, xt) with p(yt| Zt), and pI
notates the distribution that results from an independence assumption. Like p(yt| Zt, xt) in equation (12),
p(yt| Zt) is derived directly from data. Again, if we were testing a different DA filter, we would use a different
substitution for the empirical likelihood function.

The key takeaway is thatD p‖pNð Þ≥0measures the extent to which real-world violations of the EnKF normality
and/or conditional independence assumptions in the observation operator (i.e., the likelihood function) con-
tribute to information loss in this particular application experiment, while D(p‖pI) ≥ 0 measures only the infor-
mation loss due to the conditional independence assumption in the likelihood function. If it were exactly true
that (1) our retrievals were Gaussian distributed around our evaluation measurements with covariance R and
(2) that Y is independent of X conditional on Z, then equations (14) and/or (15.1) would return D p‖pNð Þ ¼ 0
and D(p‖pI) ≥ 0 indicating zero information loss.

Given that we are interested in separating inefficiency effects due to artifacts in the filter prior and likelihood,
it is useful to notice that the divergences of the decomposed joint distributions are additive. To state this gen-
erally, imagine applications of Bayes’ theorem to two different joint probability distributions over two ran-
dom variables Y and Z, p(Y, Z) and q(Y, Z); in this general case we have the following result:

D p YjZð Þp Zð Þ‖q YjZð Þq Zð Þð Þ ¼ D p YjZð Þ‖q YjZð Þð Þ þ D p Zð Þ‖q Zð Þð Þ: (16)

In the context of DA, this means that if we use the EnKF prior and likelihood, then the information loss by the
EnKF (equation (10)) relative to the data-derived posterior (equation (13)) is decomposed as

D p Ztjyt; xtð Þ‖pa Ztjyt; x1:t�1ð Þð Þ ¼ k þ D p ytjZt; xtð Þ‖N ytjZt; Rð Þð Þ þ D p Ztjxtð Þ‖N ZtjXt ;Qt
� �� �

: (17)

Xt andQt are the ensemble mean and covariance at time t, and k is a constant related to the Bayesian normal-

izing factors. Notice that theNðÞ terms on the right-hand side of the equation arise from the EnKF normality
assumptions, and different assumptions would result if a different DA filter were used.
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We will not directly use equations (16) and (17), but they are useful to develop an intuition about how these
divergence decompositions relate to the efficiency metrics in equations (8) and (9). Notice that the informa-
tion loss from equation (8) is equal to the total divergence in equation (17):

I Z; X; Yð Þ � I Z; Xþð Þ ¼ D p Ztjyt; xtð Þ‖pa Ztjyt; x1:t�1ð Þð Þ ¼ ∫∫∫p x; y; zð Þ ln p zjy; xð Þ
p zjxþ x; yð Þð Þ

� �
dxdydz: (18)

We can use this basic strategy to measure information loss—up to a constant k related to the Bayes normal-
izing constants—due to any individual assumption or approximation in the DA filter. The individual parametric
or probabilistic assumptions in the likelihood and/or prior will depend on the particular DA algorithm we
want to test.

3. Example Application: Methods and Results

This section presents an experiment that uses the theory outlined in section 2 to quantify the efficiency of
particular applications of the EnKF to assimilate soil moisture retrievals. The objective of this example is to
mimic, as closely as possible, the experimental setup of an existing soil moisture DA experiment—in particu-
lar, we chose to mimic the experimental setup by Kumar et al. (2014). Our experiment first measures the effi-
ciency of Kumar et al.’s DA strategy using the efficiency metrics described in section 2.1, and then diagnoses
the causes of inefficiency using the divergence metrics outlined in section 2.2. Finally, we ran a set of experi-
ments that look at the effect on information loss of changing the parameters of the EnKF, specifically the
assumed retrieval error covariance, and the state perturbation covariance.

3.1. Models, Data, and Assimilation Details

Soil moisture retrievals from the Land Parameter Retrieval Model (LPRM; Owe et al., 2008), which is based on
observations from the Advanced Microwave Scattering Radiometer for Earth (AMSR-E), were assimilated into
the Noah Multi-Parameterization (Noah-MP) land surface model (Niu et al., 2011) for the time period of 2001–
2011. Results were evaluated against point-based in situ data from 64 of the USDA Soil Climate Analysis
Network (SCAN; Schaefer et al., 2007) sites; these are illustrated in Figure 3. Evaluation data from SCAN were
made at a depth of 2 inches (5 cm).

Figure 3. The 64 SCAN site locations.
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Noah-MPwas run at an hourly time step over four soil layers with depths of 5, 10, 35, and 150 cm. Model para-
meters and forcing data were from NLDAS (Xia et al., 2013). Noah-MP configuration options are listed in
Table 1. These configuration options are explained in some detail by Niu et al. (2011).

The EnKF was used to update the volumetric soil water content in the four modeled soil layers given
LPRM retrievals. LPRM retrievals are given in units of volumetric water (m3/m3) with approximate retrie-
val depth of 5 cm, and with spatial resolution of approximately a quarter degree. Cumulative density
function (CDF) matching is necessary to remove biases between the model and retrievals (Kumar
et al., 2012), and will—at least potentially—result in some amount of information loss, which we will
measure directly. We applied CDF matching to transform retrievals into the Noah-MP model climatology
using a discrete binned transform with resolution of 1% of the range of the modeled and observed
values. CDF matching was implemented independently at each of the 64 sites (but did not use
SCAN data).

The EnKF observation operator was an identity operator on the top-layer soil moisture with retrieval error cov-

ariances supplied by standard LPRM data files (all retrieval error covariances were either
ffiffiffi
R

p ¼ 0:06m3/m3 orffiffiffi
R

p ¼ 0:10 m3/m3). Retrieval error covariances were scaled at each site based on the changes to the total

variance of the retrievals due to CDF matching: R� ¼ R var Yð Þ
var Ycdfð Þ, where Ycdf are the transformed observations,

but we allowed no scaled retrieval error covariance to be less than
ffiffiffi
R

p ¼ 0:01 m3/m3. This means that
the retrieval errors were different at each site. The EnKF ensemble consisted of 50 members. Ensemble
forcing perturbations were sampled from the cross-correlated distribution used by Kumar et al. (2014), which
are listed in Table 2.

Table 1
Noah-MP Configuration Options

Physical process Available Noah-MP options Option used here

Vegetation • Prescribed LAI and shade fraction Prescribed LAI and shade fraction
• LAI and shade fraction from dynamic carbon uptake and partitioning
• Shade fraction calculated from prescribed LAI
• Prescribed LAI and constant shade fraction

Stomatal resistance • Ball-Berry (Ball et al., 1987) Ball-Berry
• Jarvis (Chen et al., 1996)

Soil moisture factor for stomatal resistance • Noah-type (based on soil moisture) Noah-type
• CLM-type (based on stomatal resistance) (Oleson et al., 2010)
• SSiB-type (based on stomatal resistance) (Xue et al., 1991)

Runoff and groundwater • TOPMODEL with groundwater (Niu et al., 2007) TOPMODEL with groundwater
• TOPMODEL with equilibrium water table (Niu et al., 2005)
• Infiltration-excess surface runoff and free drainage (Schaake et al., 1996)
• BATS runoff and free drainage (Yang & Dickinson, 1996)

Surface layer drag coefficient • Monin-Obukhov Monin-Obukhov
• Noah-type (Chen et al., 1997)

Super-cooled liquid water • No iteration (Niu & Yang, 2006) No iteration
• With iteration (Koren et al., 1999)

Frozen soil permeability • Linear: hydraulic properties from total soil moisture (Niu & Yang, 2006) Linear: total soil moisture
• Nonlinear: hydraulic properties from liquid water only (Koren et al., 1999)

Radiation transfer • Two-stream with 3-D structure Two-stream with 3-D structure
• Two-stream (Niu & Yang, 2004)
• Two-stream with canopy gap equal to 1-(shade fraction)

Snow albedo • BATS (snow age, grain size growth, impurity) (Yang et al., 1997) CLASS
• CLASS (only snow age) (Verseghy, 1991)

Frozen/liquid partitioning • Jordan (1991) Jordan (1991)
• Offset threshold: Tair < Tfrz + 2.2 K
• Standard threshold: Tair < Tfrz

Bottom soil temperature • Zero heat flux Prescribed (8 m) bottom temperature
• Prescribed (8 m) bottom temperature

Soil temperature solution • Semi-implicit Semi-implicit
• Full implicit
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3.2. EnKF Efficiency Experiments

The first step in the efficiency analysis is to collect a single set of coincident (collocated and co-temporal)
open-loop model predictions, satellite retrievals, in situ measurements, and EnKF analysis predictions:

Xi;t; Yi;t; Zi;t; Xþ
i;t

n o
i¼1;…;m;t¼1;…;ti

, wherem = 64 is the number of in situmeasurement locations—illustrated in

Figure 3. The 1200 sample points were sampled from the complete 2001–2011 hourly time series of each of
them = 64 SCAN locations, for a total of N = 76,800 sample points. All entropy and information statistics were
estimated from these N samples.

It is important to reiterate that it is necessary to include all sites together in the calculation of a single set of
information metrics. If we used a site-by-site or site-independent analysis—for example, calculating equa-
tions (3), (6), (8), and/or (9) individually for each SCAN site, then the resulting statistics would be influenced
by any systematic bias between the true surface soil moisture within each pixel and the soil moisture mea-
sured at the specific in situ location within that pixel. For example, we would not, in that case, measure the
information content of the retrievals that could help mitigate additive bias in the soil moisture state of the
model. Additionally, if we treated each site independently, then we would run the risk of overestimating
the information content of the models and/or retrievals since the data at an individual site may imply sys-
tematic relationships between the point-based in situ measurement and the retrieval or model. We cannot
know such site-specific systematic errors, and therefore must calculate information statistics by integrating
over all of the available sites. This spatial integration is implicit in the integrations over empirical probability
distributions in equations (3) and (6) as long as we include data pairs and triplets from all sites when we esti-
mate the relevant empirical joint distributions.

Before we present the results of our efficiency experiments, we must briefly explore the implications of sam-
ple size and data resolution. All empirical probability distributions were derived as histograms with fixed bin
widths, and maximum likelihood estimators of nonparametric discrete entropy and mutual information sta-
tistics like these are convergent but biased (Paninski, 2003). We must choose a histogram resolution that
allows for robust statistical estimators given our available sample size. Figure 4 shows the effect of sample
size and bin resolution on the EnKF efficiencies from equation (9), and the smallest discretization that allows
for a stable efficiency estimator at N = 76,800 is about 0.03-m3/m3 volumetric soil moisture.

Table 3 presents the primary results of these efficiency experiments. The statistics in this table were calcu-
lated from the full data sample using a discretization of 0.03 m3/m3, which was chosen according to
Figure 4. The first thing to notice is that the total available information from model and retrievals together
generally explains less than 20% of the total entropy of the in situ data (fourth row in Table 3). The second
thing to notice is that the retrievals alone generally contain marginal information of about 5% of the total
variability of the SCAN data (third row in Table 3). This means that, a priori, we will expect generally relatively
small improvements to our ability to inform SCAN data after assimilating LPRM retrievals.

To put this in some perspective, soil moisture retrievals are generally evaluated against in situ networks using
linear or second-order statistics like the product–moment correlation coefficient or a fraction of explained
variance (e.g., Liu et al., 2011). Theoretical relationships between second-order statistics and information the-
ory metrics were derived numerically for the ideal second-order case (i.e., all probability distributions are

Table 2
EnKF Forcing and State Perturbations (50 Ensemble Members)

Variable Perturbation type Standard deviation Cross correlations

Forcings SW LW Precipitation
Shortwave radiation Multiplicative 0.3 1.0 �0.5 �0.8
Longwave radiation Additive 50 W/m2 �0.5 1.0 0.5
Precipitation Multiplicative 0.5 �0.8 0.5 1.0

Soil moisture states Layer 1 Layer 2 Layer 3 Layer 4
Layer 1 (5 cm) Additive 6 × 10�3 m3/m3 1.0 0.6 0.4 0.2
Layer 2 (10 cm) Additive 1.1 × 10�4 m3/m3 0.6 1.0 0.6 0.4
Layer 3 (35 cm) Additive 6 × 10�6 m3/m3 0.4 0.6 1.0 0.6
Layer 4 (150 cm) Additive 4 × 10�6 m3/m3 0.2 0.4 0.6 1.0
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Figure 4. Convergence of total information, I(Z; X, Y), and EnKF efficiency,EDA, as a function of sample size at different his-
togram bin widths used for estimating the empirical joint distribution p(X, Y, Z). The inserts show the same data as the
primary plots, but plotted on a linear x axis.

Table 3
Breakdown of the Information-Use Efficiency Metrics From an EnKF Assimilation of LPRM Retrievals Into the Noah-MP Land
Surface Model as Evaluated Against SCAN Data

Measurement Metric Value

Information in model simulationsa
I Z;Xð Þ
H Zð Þ

0.13

Information in retrievalsa
I Z;Yð Þ
H Zð Þ

0.08

Conditional information in retrievalsa I Z;YjXð Þ
H Zð Þ

0.05

Total information from model and retrievalsa
I Z;X;Yð Þ
H Zð Þ

0.18

Fraction of retrieval information lost via CDF-matching
1� I Z;YCDFjXð Þ

I Z;YjXð Þ

0.11

Information from EnKF
I Z;Xþð Þ
H Zð Þ

0.13

Efficiency of EnKF EDAð Þ
I Z;Xþð Þ
I Z;X;Yð Þ

0.72

Efficiency of EnKF Ey
� �

I Z;Xþð Þ�I Z;Xð Þ
I Z;YjXð Þ

0.03

aInformation metrics are normalized by the total entropy of the evaluation data Z so that their values range between 0
and 1. They are interpreted as, for example, “the fraction of total uncertainty about measurements Z that can be resolved
given Y and X.”
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jointly Gaussian)—these are shown in Figure 5. Notice that information
ratios follow much more closely the variance-based signal-to-noise
ratio than does the product–moment correlation coefficient. As a point
of reference, a linear correlation coefficient of ρ2 = 0.71 corresponds to
a signal-to-noise ratio of 1—these both happen at an error standard
deviation of 0.5.

In our example here, with a bin resolution in the empirical joint distribu-

tions of 0.03 m3/m3, an information statistic with value of I
H ¼ 0:05

represents a linear correlation of ρ2 ≈ 0.55, which occurs in a linear
model when the error standard deviation is approximately 1.5 times
the signal standard deviation. This is higher than the ρ2 = 0.42 found
by Liu et al. (2011) when comparing AMSR-E retrievals with a subset
of data from the SCAN network, and similar to the ρ2 = 0.55 that they
found when comparing AMSR-E retrievals against cal/val core site data.
Our retrieval statistics generally agree with those published previously,
and the point is that if we are going to use point-scale data to evaluate
DA applications (e.g., Kumar et al., 2014), we have to be aware that it
appears to be typical that there is very little information in retrievals
about point-scale phenomena to begin with.

Liu et al. (2011) found that the fraction of variance in SCAN in situ measurements that was explainable by
AMSR-E retrievals was essentially equal to the fraction of variance explainable by the Catchment land model
forced with MERRA data (ρ2 = 0.42 versus ρ2 = 0.43). This disagrees somewhat with our analysis, which shows

that Noah-MP provides more information than the AMSR-E retrievals. Information fractions of IH ¼ 0:13 for the

model versus I
H ¼ 0:08 for the retrievals would correspond to linear correlation coefficients of ρ2 ≈ 0.8 versus

ρ2 ≈ 0.67 if the relationships were actually linear-Gaussian (again, see Figure 5). This difference could be due
to either the fact that (1) our model (Noah-MP) and forcing data (NLDAS) are better than the Catchment
model with MERRA forcing data used by Liu et al. or that (2) our nonparametric information metrics capture
some nonlinear portion of the signal in the model predictions that is not present in the retrievals. In fact, our
Noah-MP correlation coefficient is ρ2 ≈ 0.68 and our LRPM correlation coefficient is ρ2 ≈ 0.54—our Noah-MP
model forced by NLDAS is somewhat better than Liu et al.’s Catchment/MERRA configuration, but the non-
parametric measure is capturing some systematic nonlinear relationship between Noah-MP and SCAN soil
moisture.

The next important result is that CDF-matching cost about 10% of the conditional information in the retrie-
vals (fifth row in Table 3). It is interesting to notice that histogram matching is an invertible transform, and
should therefore be information preserving. However, CDF matching was applied locally, and we calculated
our information statistics globally across all sites in Figure 3. Information loss due to CDF matching is due to
the fact that these local transforms all have different inversions, but all of the data are lumped in the same
empirical density functions for the integrals in equations (3) and (6). There is no single mapping to invert
the localized CDF matching that works across all sites.

Themost important results for our purposes are about the efficiency of the EnKF (lines 7 and 8 of Table 3). The
efficiency of the EnKF in this particular application at extracting information from retrievals is less than 5%
(line 8 of Table 3). It is certainly true that there is not a lot of information in the retrievals to begin with; how-
ever, of that small amount of information, the EnKF uses only 5%. Almost no information is extracted from
LPRM observations in this example.

Notice that the value of the total efficiencymetric in Table 3 (EDA ¼ 0:72) is relatively high. This means that the
EnKF in this case was able to extract more than three quarters of the total information available from the
Noah model and LPRM retrievals. This might seem high, except that the model itself provides 0:13

0:18 ¼ 72%

of the total available information. So a value ofEDA ¼ 0:72 simply means that the EnKF did not lose informa-
tion relative to the open-loop (no assimilation). Similarly, Kumar et al. found very little improvement over the
open-loop using their squared-error and correlation statistics, and what our metrics add to their analysis is to
address whether the poor improvement is due to high uncertainty (low information) in the LPRM data versus

Figure 5. The general relationship between standard linear-Gaussian statistics
and our fraction of explained information statistics like I(Z; X)/H(Z). These theo-
retical relationships are valid for standard normal predictands and predictors
with additive Gaussian noise, and the signal-to-noise ratio is defined as the ratio
of the root variance of the predicted variable to the root variance of the error in
the predictor (i.e., a signal-to-noise ratio of 1 means that the variance of the
error in the predictor is equal to the variance of the variable being predicted).
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to information loss in the DA algorithm. The answer to this question comes from the EY ¼ 0:03 efficiency
metric. These results show that while it is certainly true that there is very little marginal information in the
LPRM retrievals (over and above what is available from the Noah model), it is also the case that the DA
algorithm is able to extract only a small amount of what little information exists.

3.3. EnKF Decomposition Experiments

We have seen that our EnKF implementations are inefficient in this particular example—meaning that they
did not make full use of the available information from the remote sensing retrievals. Now let us try to under-
stand what exactly is causing this information loss.

To begin, we calculated the divergence (from equation (14)) from the empirical conditional p(Zt| yt, xt) to the
analysis posterior pa(ξt| yt, x1 : t � 1) at each model time step where retrievals were assimilated. We then cal-
culated a series of other divergences (like in equation (14)) that tested individual EnKF assumptions. We
tested four different semiempirical likelihood functions by replacing the data-derived likelihood function in
equation (12) with the following:

1. The EnKF observation operator, N ytjZt; Rð Þ, so that the resulting divergence (equation (14)) tested the
total information loss due to approximations in the EnKF observation operator.

2. A Gaussian distribution with sample mean and variance: N ytjcμy ; bσy� �
, so that the resulting divergence

measured information loss due to assuming only that retrieval error has zero higher-order moments.
3. A Gaussian distribution with sample mean and a prescribed variance: N ytjcμy ; R

� �
, so that the resulting

divergence measured information loss due to the prescribed retrieval error covariance.
4. A Gaussian distribution with an identity mean and a sample variance: N ytjZt; bσy� �

, so that the resulting
divergence measured information loss due to the linearity assumption in the retrieval operator.

Parameterscμy and bσy denote the sample mean and variance of the conditional distribution p(yt| Zt, xt), and R

is the (scaled) LPRM retrieval error covariance that was used for DA. Each of these four different likelihood
functions resulted in a different posterior distribution, similar to equations (13) and (15.1). Each of the four
different posterior distributions that result from using each of the four likelihood functions listed above
represents a data-derived (empirical) conditional distribution function that includes some portion of the
parametric assumptions used in the likelihood function of the EnKF. By measuring the divergence (as in
equation (14)) from the data-derived conditional distribution over Z to these partially parametric conditional
distributions over Z allows us to measure the information loss due to (1) assuming that the retrieval is
Gaussian distributed with mean given by an identity relationship with the model-simulated soil moisture
and variance given by the EnKF ensemble, and that the retrieval is Gaussian distributed with (2) data-derived
mean and variance, (3) data-derived mean and prescribed variance, and (4) data-derived variance and pre-
scribed mean.

We tested the same assumptions in the EnKF posterior. The EnKF uses as its prior a Gaussian distribution with
mean and variance estimated from the model ensemble at a given time step. We evaluated the effects of
using this distribution relative to the data-derived prior using four semiempirical substitutions:

1. The EnKF prior, N Ztj bXt ;cQt

� �
, so that the resulting divergence tested the total information loss due to

approximation in the EnKF prior.
2. A Gaussian distribution with data-derived mean and variance: N Ztj bμz ; bσzð Þ , so that the resulting

divergence measured information loss due to assuming that retrieval error has zero higher-order
moments.

3. A Gaussian distribution with sample mean and a prescribed variance: N Ztj bμz ;Qt
� �

, so that the resulting
divergence measured information loss due to assessing model error from the prescribed ensemble char-
acteristics (prescribed forcing errors and state transition errors).

4. A Gaussian distribution with an identity mean and a sample variance: N ZtjXt ; bσz� �
, so that the resulting

divergence measured information loss due to the linearity assumption in the retrieval operator.

In the case of these decomposition of the prior, bμz and bσz are the sample mean and variance of the conditional
distribution p(Z| X). Unlike the efficiency analyses reported in section 3.2, the sample means and variances in
this decomposition analysis were derived from the background distributions rather than from the open-loop
model simulations, so that we were working with the exact distributions that the EnKF used. The background
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distribution is the prior, p(Xt| x1 : t � 1), in equation (10); this differs from the open-loop in that the background
distribution at time t includes updates from previous observations.

Divergence results are presented in Table 4. In this case (LPRM assimilation into the Noah-MP model evalu-
ated against the SCAN network), the total EnKF divergence was close to three times the entropy of the in situ
observations, and this was split approximately evenly between the likelihood and prior according to equa-
tion (16). Within the likelihood itself, almost no divergence was due to the assumption of Gaussian retrieval
error, or due to the assumption that the retrieval was unbiased relative to the in situ data. Remember that this
lack of retrieval bias relative to the in situ measurements is not site-specific, just that the retrieval in general
over the whole run domain is unbiased. Essentially, all of the likelihood-related divergence was due to the
retrieval error covariance.

Related to the prior, the divergence was again due predominately to the model error variance. Again, we
used forcing and state perturbations that are essentially standard in soil moisture EnKF applications (e.g.,
Kumar et al., 2014). Relatively little distributional information about the in situ data was lost due to the
Gaussianity assumption, and relatively little was lost due to the assumption the that ensemble mean was
unbiased relative to the in situ data. Our model is not biased, we just have not estimated the error variance
correctly using what are essentially standard forcing and state transition error terms.

4. Summary and Discussion

The most obvious takeaway from this empirical analysis was that the LPRM space-based soil moisture retrie-
vals that we looked at here contained relatively little information about the point-scale in situ measurements
in the SCAN network. This holds regardless of the DA method used to assimilate those observations, and is in
general agreement with previous studies that have reported linear-Gaussianmetrics with at least comparable
values. Even given this low initial information content (related to point-based in situ data), our applications of
the EnKF used—at best—only a tiny fraction of the information content of the (imperfect) remote sensing
retrievals. It is important to understand that the latter result cannot be extrapolated to other applications
of the EnKF to soil moisture DA, since our results here (Table 4) clearly indicate that different choices of obser-
vation and state covariance parameters can be expected to improve DA results with even a linear-Gaussian
filter like the EnKF.

More generally, we outlined a theory for measuring the ability of DA filters to use the information content of
assimilated observations. The primary purpose of this type of procedure is to quantify whether improved DA
estimates might come from improved sensor technology versus from improved DA procedures and algo-
rithms. This procedure is generally applicable, and our soil moisture example was just that—an example. It
is important to understand that this theory accounts directly for all uncertainties in a typical geophysical data
assimilation problem—including model error, retrieval error, and representativeness errors. The latter
because information should be preserved through DA even if the model, in situ data, and retrievals are all
related to fundamentally different physical quantities.

Table 4
Divergence Decomposition of the EnKF With LPRM Retrievals According to Equation (14)

Interpretation Prior Likelihood Information loss

Total EnKF divergence N Xt ;Qt
	 


N Xt; R½ � 4.08
Total effects of model prior N Xt ;Qt

	 

p(yt| xt, Zt) 2.55

Effects of Gaussianity in the prior N bμt ; bσt½ � p(yt| xt, Zt) 0.06
Effects of ensemble variance N bμt ;Qt

	 

p(yt| xt, Zt) 1.62

Effects of linearity (identity) mean N Xt ; bσt	 

p(yt| xt, Zt) 0.14

Total effects of retrieval operatora p(Zt| xt) N Zt; R½ � 1.17
Effects of Gaussianity in retrieval operator p(Zt| xt) N bμt ; bσt½ � 0.08
Effects or prescribed retrieval variance p(Zt| xt) N bμt ; R½ � 1.91
Effects of linearity (identity) mean p(Zt| xt) N Zt; bσt½ � 0.06

Note. These divergences are from the empirical conditional in equation (12) to the specified hybrid conditionals, as
described by equation (13). All divergence metrics are reported as a fraction of the entropy of evaluation data, H(Z).
aThe retrieval operator is often called an observation operator in data assimilation literature.
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